Смо выбор показателей эффективности системы. Теория массового обслуживания. Построение имитационных моделей

Во всех рассмотренных выше СМО предполагалось, что все запросы, поступающие в систему - однородные, то есть, они имеют один и тот же закон распределения времени обслуживания и обслуживаются в системе согласно общей дисциплины выбора из очереди. Однако, во многих реальных системах запросы, поступающие в систему, неоднородны как по распределению времени обслуживания, так и по их ценности для системы и, следовательно, праву претендовать на первоочередное обслуживание в момент освобождения прибора. Такие модели исследуются в рамках теории приоритетных СМО. Эта теория довольно хорошо развита и ее изложению посвящено немало монографий (см., например, , , , и т.д.). Здесь мы ограничимся кратким описанием приоритетных систем и рассмотрим одну систему.

Рассмотрим однолинейную СМО с ожиданием. На вход системы поступают независимых простейших потоков, поток имеет интенсивность . Будем обозначать

Времена обслуживания запросов из потока характеризуются функцией распределения с преобразованием Лапласа - Стилтьеса и конечными начальными моментами

Запросы из потока назовем запросами приоритета к.

Считаем, что запросы из потока более приоритетны, чем запросы из потока, если Приоритетность проявляется в том, что в момент окончания обслуживания следующим на обслуживание выбирается из очереди запрос, имеющий максимальный приоритет. Запросы, имеющие один и тот же приоритет, выбираются согласно установленной дисциплине обслуживания, например, согласно дисциплине FIFO.

Рассматриваются различные варианты поведения системы в ситуации, когда во время обслуживания запроса некоторого приоритета в систему поступает запрос более высокого приоритета.

Система называется СМО с относительным приоритетом, если поступление такого запроса не прерывает обслуживание запроса. Если же такое прерывание происходит, то система называется СМО с абсолютным приоритетом. В этом случае, однако, требуется уточнить дальнейшее поведение запроса, обслуживание которого оказалось прерванным. Различают следующие варианты: прерванный запрос уходит из системы и теряется; прерванный запрос возвращается в очередь и продолжает обслуживание с места прерывания после ухода из системы всех запросов, имеющих более высокий приоритет; прерванный запрос возвращается в очередь и начинает обслуживание заново после ухода из системы всех запросов, имеющих более высокий приоритет. Прерванный запрос обслуживается прибором после ухода из системы всех запросов, имеющих более высокий приоритет, в течение времени, имеющего прежнее или некоторое другое распределение. Возможен вариант, когда требуемое время обслуживания в последующих попытках идентично времени, которое требовалось для полного обслуживания данного запроса в первой попытке.

Таким образом, имеется достаточно большое число вариантов поведения системы с приоритетом, с которыми можно ознакомиться в вышеупомянутых книгах. Общим в анализе всех систем с приоритетами является использование понятия периода занятости системы запросами приоритета к и выше. При этом основным методом исследования этих систем является метод введения дополнительного события, кратко описанный в разделе 6.

Проиллюстрируем особенности нахождения характеристик систем с приоритетами на примере системы, описанной в начале раздела. Будем считать, что это система с относительным приоритетом и найдем стационарное распределения времени ожидания запроса приоритета если бы он поступил в систему в момент времени t (так называемого виртуального времени ожидания), для системы с относительными приоритетами.

Обозначим

Условием существования этих пределов является выполнение неравенства

где величина вычисляется по формуле:

Обозначим также .

Утверждение 21. Преобразование Лапласа - Стилтьеса стационарного распределения виртуального времени ожидания запроса приоритета к определяется следующим образом:

где функции задаются формулой:

а функции находятся как решения функциональных уравнений:

Доказательство. Заметим, что функция представляет собой преобразование Лапласа - Стилтьеса распределения длины периода занятости системы запросами приоритета I и выше (то есть, интервала времени с момента поступления в пустую систему запроса приоритета I и выше и до первого после этого момента, когда система окажется свободной от присутствия запросов приоритета I и выше). Доказательство того, что функция удовлетворяет уравнению (1.118), почти дословно повторяет доказательство Утверждения 13. Отметим лишь, что величина есть вероятность того, что период занятости системы запросами приоритета I и выше начинается с прихода запроса приоритета а величина трактуется как вероятность ненаступления катастрофы и запросов приоритета I и выше, за периоды занятости, порожденные которыми наступает катастрофа, за время обслуживания запроса приоритета , начавшего данный период занятости.

Сначала вместо процесса рассмотрим существенно более простой вспомогательный процесс - время, в течение которого ожидал бы начала обслуживания запрос приоритета к, если бы он поступил в систему в момент времени t и после этого в систему не поступало запросов более высокого приоритета.

Пусть - преобразование Лапласа - Стилтьеса распределения случайной величины . Покажем, что функция определяется следующим образом:

(1.119)

Вероятность того, что система пуста в момент времени - вероятность того, что в интервале началось обслуживание запроса приоритета

Для доказательства (1.119) применим метод введения дополнительного события. Пусть независимо от работы системы поступает простейший поток катастроф интенсивности s. Каждый запрос назовем «плохим», если во время его обслуживания поступает катастрофа, и «хорошим» - в противном случае. Как следует из утверждений 5 и 6, поток плохих запросов приоритета к и выше является простейшим с интенсивностью

Введем событие A(s,t) - за время t в систему не поступали плохие запросы приоритета к и выше. В силу утверждения 1 вероятность этого события подсчитывается как:

Подсчитаем эту вероятность иначе. Событие A(s,t) является объединением трех несовместных событий

Событие состоит в том, что катастрофы не поступили ни за время t, ни за время При этом, естественно, за время t в систему поступали только хорошие запросы приоритета к и выше. Вероятность события очевидно, равна

Событие состоит в том, что катастрофа поступила в интервале , но в момент поступления система была пуста, а за время не поступило плохих запросов приоритета к и выше.

Вероятность события вычисляется как:

Событие состоит в том, что катастрофа поступила в интервале но в момент ее поступления в системе обслуживался запрос приоритета ниже k, который начал обслуживаться в интервале а за время t - и не поступило плохих запросов приоритета k и выше. Вероятность события определяется следующим образом:

Поскольку событие есть сумма трех несовместных событий, то его вероятность есть сумма вероятностей этих событий. Поэтому

Приравнивая два полученных выражения для вероятности и умножая обе части равенства на после несложных преобразований получаем (1.119)

Очевидно, что для того, чтобы за время ожидания запроса, поступившего в момент t не поступило катастрофы, необходимо и достаточно, чтобы за время не поступило катастроф и запросов приоритета и выше, таких, что за периоды занятости (запросами приоритета и выше), порожденные ими, наступает катастрофа. Из этих рассуждениий и вероятностной трактовки преобразования Лапласа - Стилтьеса получаем формулу, дающую связь преобразований в очевидной форме.

1. Показатели эффективности использования СМО:

Абсолютная пропускная способность СМО – среднее число заявок, которое смо-

жет обслужить СМО в единицу времени.

Относительная пропускная способность СМО – отношение среднего числа заявок,

обслуживаемых СМО в единицу времени, к среднему числу поступивших за это же

время заявок.

Средняя продолжительность периода занятости СМО.

Коэффициент использования СМО – средняя доля времени, в течение которого

СМО занята обслуживанием заявок, и т.п.

2. Показатели качества обслуживания заявок:

Среднее время ожидания заявки в очереди.

Среднее время пребывания заявки в СМО.

Вероятность отказа заявке в обслуживании без ожидания.

Вероятность того, что вновь поступившая заявка немедленно будет принята к обслуживанию.

Закон распределения времени ожидания заявки в очереди.

Закон распределения времени пребывания заявки в СМО.

Среднее число заявок, находящихся в очереди.

Среднее число заявок, находящихся в СМО, и т.п.

3. Показатели эффективности функционирования пары «СМО – клиент», где под «клиентом» понимают всю совокупность заявок или некий их источник. К числу таких показателей относится, например, средний доход, приносимый СМО в единицу времени

Классификация систем массового обслуживания

По числу каналов СМО:

одноканальные (когда имеется один канал обслуживания)

многоканальные , точнее n -канальные (когда количество каналов n ≥ 2).

По дисциплине обслуживания:

1. СМО с отказами , в которых заявка, поступившая на вход СМО в момент, когда все

каналы заняты, получает «отказ» и покидает СМО («пропадает»). Чтобы эта заявка все же

была обслужена, она должна снова поступить на вход СМО и рассматриваться при этом как заявка, поступившая впервые. Примером СМО с отказами может служить работа АТС: если набранный телефонный номер (заявка, поступившая на вход) занят, то заявка получает отказ, и, чтобы дозвониться по этому номеру, следует его набрать еще раз.

2. СМО с ожиданием (неограниченным ожиданием или очередью ). В таких системах

заявка, поступившая в момент занятости всех каналов, становится в очередь и ожидает освобождения канала, который примет ее к обслуживанию. Каждая заявка, поступившая на вход, в конце концов будет обслужена. Такие СМО часто встречаются в торговле, в сфере бытового и медицинского обслуживания, на предприятиях (например, обслуживание станков бригадой наладчиков).

3. СМО смешанного типа (с ограниченным ожиданием ). Это такие системы, в которых на пребывание заявки в очереди накладываются некоторые ограничения.



Эти ограничения могут накладываться на длину очереди , т.е. максимально возможное

число заявок, которые одновременно могут находиться в очереди. В качестве примера такой системы можно привести мастерскую по ремонту автомобилей, имеющую ограниченную по размерам стоянку для неисправных машин, ожидающих ремонта.

Ограничения ожидания могут касаться времени пребывания заявки в очереди , по исте-

чению которого она выходит из очереди и покидает систему).

В СМО с ожиданием и в СМО смешанного типа применяются различные схемы об-

служивания заявок из очереди. Обслуживание может быть упорядоченным , когда заявки из очереди обслуживаются в порядке их поступления в систему, и неупорядоченным , при котором заявки из очереди обслуживаются в случайном порядке. Иногда применяется обслуживание с приоритетом , когда некоторые заявки из очереди считаются приоритетными и поэтому обслуживаются в первую очередь.

По ограничению потока заявок:

замкнутые и открытые .

Если поток заявок ограничен и заявки, покинувшие систему, могут в нее возвращать-

ся, то СМО является замкнутой , в противном случае – открытой .

По количеству этапов обслуживания:

однофазные и многофазные

Если каналы СМО однородны, т.е. выполняют одну и ту же операцию обслужива-

ния, то такие СМО называются однофазными . Если каналы обслуживания расположены последовательно и они неоднородны, так как выполняют различные операции обслуживания (т.е. обслуживание состоит из нескольких последовательных этапов или фаз), то СМО называется многофазной . Примером работы многофазной СМО является обслуживание автомобилей на станции технического обслуживания (мойка, диагностирование и т.д.).

Система массового обслуживания состоит из следующих элементов (рисунок 5.6).

1 - входящий поток требований ω(t ) – совокупность требований к СМО на проведение определенных работ (заправка, мойка, ТО и др.) или оказание услуг (покупка изделий, деталей, материалов и др.). Входящий поток требований может быть постоянным и переменным.

Требования бывают однородные (одинаковые виды работ или услуг) и неоднородные (разные виды работ или услуг).

2 - очередь – требования, ожидающие обслуживания. Очередь оценивается средней длиной r – числом объектов или клиентов, ожидающих обслуживания.

Рисунок 5.6 – Общая схема системы массового обслуживания

3 - обслуживающие аппараты (каналы обслуживания) – совокупность рабочих мест, исполнителей, оборудования, осуществляющих обслуживание требований по определенной технологии.

4 - выходящий поток требований ω’(t ) поток требований, прошедших СМО. В общем случае выходящий поток может состоять из требований обслуженных и необслуженных. Пример необслуженных требований: отсутствие нужной детали для автомобиля, находящегося в ремонте.

5- замыкание (возможное) СМО – состояние системы, при котором входящий поток требований зависит от выходящего.

На автомобильном транспорте после обслуживания требований (ТО, ремонт) автомобиль должен быть технически исправным.

Системы массового обслуживания классифицируются следующим образом.

1 По ограничениям на длину очереди:

СМО с потерями – требование покидает СМО необслуженным, если в момент его поступления все каналы заняты;

СМО без потерь – требование занимает очередь, даже если все каналы
заняты;

СМО с ограничениями по длине очереди m или времени ожидания: если существует ограничение на очередь, то вновь поступившее (m +1)-е требование выбывает из системы необслуженным (например, ограниченная емкость накопительной площадки перед АЗС).

2 По количеству каналов обслуживания п:

Одноканальные: n =1;

Многоканальные n ≥2.

3 По типу обслуживающих каналов:

Однотипные (универсальные);

Разнотипные (специализированные).

4 По порядку обслуживания:

Однофазовые – обслуживание производится на одном аппарате (посту);

Многофазовые – требования последовательно проходит несколько аппаратов обслуживания (например, поточные линии ТО; конвейерная сборка автомобиля; линия внешнего ухода: уборка → мойка → обсушка → полировка).

5 По приоритетности обслуживания:

Без приоритета – требования обслуживаются в порядке их поступления на СМО;

С приоритетом – требования обслуживаются в зависимости от присвоенного им при поступлении ранга приоритетности (например, заправка автомобилей скорой помощи на АЗС; первоочередной ремонт на АТП автомобилей, приносящих наибольшую прибыль на перевозках).

6 По величине входящего потока требований:

С неограниченным входящим потоком;

С ограниченным входящим потоком (например, в случае предварительной записи на определенные виды работ и услуг).

7 По структуре СМО:

Замкнутые – входящий поток требований при прочих равных условиях зависит от числа ранее обслуженных требований (комплексное АТП, обслуживающее только свои автомобили (5 на рисунке 5.6));

Открытые – входящий поток требований не зависит от числа ранее обслуженных: АЗС общего пользования, магазин по продаже запасных частей.

8 По взаимосвязи обслуживающих аппаратов:

С взаимопомощью – пропускная способность аппаратов непостоянна и зависит от занятости других аппаратов: бригадное обслуживание нескольких постов СТО; использование «скользящих» рабочих;

Без взаимопомощи – пропускная способность аппарата не зависит от работы других аппаратов СМО.

Применительно к технической эксплуатации автомобилей находят распространение замкнутые и открытые, одно- и многоканальные СМО, с однотипными или специализированными обслуживающими аппаратами, с одно- или многофазовым обслуживанием, без потерь или с ограничением на длину очереди или на время нахождения в ней.

В качестве показателей эффективности работы СМО используют приведенные ниже параметры.

Интенссивность обслуживания

где ω - параметр потока требований.

показывает количество требований, поступающих в единицу времени, т.е.

A g , (5.13)

где g - .

Относителъная пропускная способность определяет долю обслуженных требований от общего их количества.

Вероятность того, что все посты свободны Р 0 , характеризует такое состояние системы, при котором все объекты исправны и не требуют проведения технических воздействий, т.е. требования отсутствуют.

Вероятность отказа в обслуживании Р отк имеет смысл для СМО с потерями и с ограничением по длине очереди или времени нахождения в ней. Она показывает долю «потерянных» для системы требований.

Р оч определяет такое состояние системы, при котором все обслуживающие аппараты заняты, и следующее требование «встает» в очередь с числом ожидающих требований r.

Зависимости для определения названных параметров функционирования СМО определяются ее структурой.

где n зан - .

Время связи требования с системой:

СМО с потерями

t сист =gt д; (5.16)

СМО без потерь

t сист =t д +t ож. (5.17)
И =С 1 r +С 2 n сн +(С 1 +C 2)ρ, (5.18)

где С 1 - стоимость простоя автомобиля в очереди;

r - средняя длина очереди;

С 2 -стоимость простоя обслуживающего канала;

n сн - количество простаивающих (свободных) каналов;

t ож - среднее время нахождения в очереди.

Из-за случайности входящего потока требований и продолжительности их выполнения всегда имеется какое-то среднее число простаивающих автомобилей. Поэтому требуется так распределить число обслуживающих аппаратов (постов, рабочих мест, исполнителей) по различным подсистемам, чтобы И= min. Этот класс задач имеет дело с дискретным изменением параметров, так как число аппаратов может изменяться только дискретным образом. Поэтому при анализе системы обеспечения работоспособности автомобилей используются методы исследования операций, теории массового обслуживания, линейного, нелинейного и динамического программирования и имитационного моделирования.

Пример. Станция технического обслуживания имеет один пост диагностирования (п= 1). Длина очереди ограничена двумя автомобилями (т= 2). Определить параметры эффективности работы диагностического поста, если интенсивность потока требований на диагностирование в среднем А =2 треб./ч, продолжительность диагностирования t д = 0,4 ч.

Интенсивность диагностирования μ=1/0,4=2,5.

Приведенная плотность потока ρ=2/2,5=0,8.

Вероятность того, что пост свободен,

P 0 =(1-ρ)/(1-ρ m +2)=(1-0,8)/(1-0,8 4)=0,339.

Вероятность образования очереди

P оч =ρ 2 Р 0 =0,8 2 0,339=0,217.

Вероятность отказа в обслуживании

P отк =ρ m +1 (1-ρ)/(1-ρ m +2)=0,8 3 (1-0,8)/(1-0,84)=0,173.

Относительная пропускная способность

g =1-P отк =1-0,173=0,827.

Абсолютная пропускная способность

А =2 0,827=1,654 треб./ч.

Среднее количество занятых постов или вероятность загрузки поста

n зан =(ρ-ρ m +2)/(1-ρ m +2)=(0,8-0,8 4)/(1-0,8 4)=0,661=1-P 0 .

Среднее количество требовниий, находящихся вочереди,

Среднее время нахождения требования в очереди

t ож =r /ω=0,564/2=0,282 ч.

Пример. На автотранспортном предприятии имеется один пост диагностирования (п= 1). В данном случае длина очереди практически неограниченна. Определить параметры эффективности работы диагностического поста, если стоимость простоя автомобилей в очереди составляет С 1 = 20 ре (расчетных единиц) в смену, а стоимость простоя постов С 2 = 15 ре Остальные исходные данные те же, что и для предыдущего примера.

Вероятность того, что пост свободен

P 0 =1-ρ=1-0,8=0,2.

Вероятность образования очереди

P оч =ρ 2 Р 0 =0,8 2 0,2=0,128.

Относительная пропускная способность g =1, так как все намеченные автомобили пройдут через диагностический пост.

Абсолютная пропускная способность А =ω=2 треб./ч.

Среднее количество занятых постов n зан =ρ=0,8.

r =ρ 2 /(1-ρ)=0,8 2 /(1-0,8)=3,2.

Среднее время ожидания в очереди

t ож =ρ 2 /(1-ρ)/μ=0,8 2 /(1-0,8)/2,5=1,6.

Издержки от функционирования системы

И =С 1 r +С 2 n сн +(С 1 +C 2)ρ=20 3,2+15 0,2+(20+15) 0,8=95,0 ре/смену.

Пример. На том же автотранспортном предприятии число постов диагностирования увеличено до двух (n =2), т.е. создана многоканальная система. Так как для создания второго поста необходимы капиталовложения (площади, оборудование и т.д.), то цена простоя средств обслуживания увеличивается до С’ 1 =22 ре. Определить параметры эффективности работы системы диагностирования. Остальные исходные данные те же, что для предыдущего примера.

Интенсивность диагностирования и приведенная плотность потока остаются теми же: μ=2,5, ρ=0,8.

Вероятность того, что оба поста свободны,

Р 0 =1:
=0,294.

Вероятность образования очереди

P оч =ρ n Р 0 /n !=0,8 2 0,294/2=0,094,

т.е. на 37 % ниже, чем в предыдущем примере.

Относительная пропускная способность g =1, так как все автомобили пройдут через диагностические посты.

Абсолютная пропускная способность А =2 треб./ч.

Среднее количество занятых постов n зан =ρ=0,8.

Среднее количество требований, находящихся в очереди,

r P оч /(n -ρ)=0,8 2 0,094/(2-0,8)=0,063.

Среднее время нахождения в очереди

t ож =P оч /(n -ρ)/μ=0,094/(2-0,8)/2,5=0,031.

Издержки от функционирования системы

И =С 1 r +С 2 n сн +(С 1 +C 2)ρ=20 0,063+22 1,2+(20+22) 0,8=61,26 ре/смену,

т.е. в 1,55 раза ниже, чем при тех же условиях для одного диагностического поста, главным образом за счет сокращения очереди автомобилей на диагностику и времени ожидания автомобилей более чем в 50 раз. Следовательно, строительство второго диагностического поста в рассматриваемых условиях целесообразно. Используя формулу (5.18) из условия И 1 2 , можно оценить предельные значения цены простоя средств обслуживания при строительстве и оснащении второго диагностического поста, которая в рассмотренном примере составляет C 2 пр =39 ре.

1.1. Структура и параметры эффективности и качества функционирования СМО

Многие экономические задачи связаны с системами массового обслуживания, т.е. такими системами, в которых, с одной стороны, возникают массовые запросы (требования) на выполнение каких-либо услуг, с другой – происходит удовлетворение этих запросов. СМО включает в себя следующие элементы: источник требований, входящий поток требований, очередь, обслуживающие устройства (каналы обслуживания), выходящий поток требований. Исследованием таких систем занимается теория массового обслуживания.

Средства, обслуживающие требования, называются обслуживающими устройствами или каналами обслуживания. Например, к ним относятся заправочные устройства на АЗС, каналы телефонной связи, посадочные полосы, мастера-ремонтники, билетные кассиры, погрузочно-разгрузочные точки на базах и складах.

Методами теории массового обслуживания могут быть решены многие задачи исследования процессов, происходящих в экономике. Так, в организации торговли эти методы позволяют определить оптимальное количество торговых точек данного профиля, численность продавцов, частоту завоза товаров и другие параметры. Другим характерным примером систем массового обслуживания могут служить заправочные станции, и задачи теории массового обслуживания в данном случае сводятся к тому, чтобы установить оптимальное соотношение между числом поступающих на заправочную станцию требований на обслуживание и числом обслуживающих устройств, при котором суммарные расходы на обслуживания и убытки от простоя были бы минимальными. Теория массового обслуживания может найти применение и при расчете площади складских помещений, при этом складская площадь рассматривается как обслуживающее устройство, а прибытие транспортных средств под выгрузку – как требование. Модели теории массового обслуживания применяются также при решении ряда задач организации и нормирования труда, других социально-экономических проблем.

Каждая СМО включает в свою структуру некоторое число обслуживающих устройств, называемых каналами обслуживания (к их числу можно отнести лиц, выполняющих те или иные операции, - кассиров, операторов, менеджеров, и т.п.), обслуживающих некоторый поток заявок (требований), поступающих на ее вход в случайные моменты времени. Обслуживание заявок происходит за неизвестное, обычно случайное время и зависит от множества самых разнообразных факторов. После обслуживания заявки канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени их обслуживания приводит к неравномерности загрузки СМО - перегрузке с образованием очередей заявок или недогрузке - с простаиванием ее каналов. Случайность характера потока заявок и длительности их обслуживания порождает в СМО случайный процесс, для изучения которого необходимы построение и анализ его математической модели. Изучение функционирования СМО упрощается, если случайный процесс является марковским (процессом без последействия, или без памяти), когда работа СМО легко описывается с помощью конечных систем обыкновенных линейных дифференциальных уравнений первого порядка, а в предельном режиме (при достаточно длительном функционировании СМО) посредством конечных систем линейных алгебраических уравнений. В итоге показатели эффективности функционирования СМО выражаются через параметры СМО, потока заявок и дисциплины.

Из теории известно, чтобы случайный процесс являлся Марковским, необходимо и достаточно, чтобы все потоки событий (потоки заявок, потоки обслуживаний заявок и др.), под воздействием которых происходят переходы системы из состояния в состояние, являлись пуассоновским, т.е. обладали свойствами последствия (для любых двух непересекающихся промежутков времени число событий, наступающих за один из них, не зависит от числа событий, наступающих за другой) и ординарности (вероятность наступления за элементарным, или малый, промежуток времени более одного события пренебрежимо мала по сравнению с вероятностью наступления за этот промежуток времени одного события). Для простейшего пуассоновского потока случайная величина Т (промежуток времени между двумя соседними событиями) распределена по показательному закону, представляя собой плотность ее распределения или дифференциальную функцию распределения.

Если же в СМО характер потоков отличен от пуассоновского, то ее характеристики эффективности можно определить приближенно с помощью Марковской теории массового обслуживания, причем тем точнее, чем сложнее СМО, чем больше в ней каналов обслуживания. В большинстве случаев для обоснованных рекомендаций по практическому управлению СМО совсем не требует знаний точных ее характеристик, вполне достаточно иметь их приближенные значения.

Каждая СМО в зависимости от своих параметров обладает определенной эффективностью функционирования.

Эффективность функционирования СМО характеризуют три основные группы показателей:

1. Эффективность использования СМО – абсолютная или относительная пропускные способности, средняя продолжительность периода занятости СМО, коэффициент использования СМО, коэффициент не использования СМО;

2. Качество обслуживания заявок- среднее время (среднее число заявок, закон распределения) ожидания заявки в очереди или пребывания заявки в СМО; вероятность того, что поступившая заявка немедленно примется к исполнению;

3. Эффективность функционирования пары CМО потребитель, причем под потребителем понимается как совокупность заявок или их некоторый источник (например, средний доход, приносимый СМО за единицу времени эксплуатации, и др).

1.2 Классификация СМО и их основные элементы

СМО классифицируются на разные группы в зависимости от состава и от времени пребывания в очереди до начала обслуживания, и от дисциплины обслуживания требований.

По составу СМО бывают одноканальные (с одним обслуживающим устройством) и многоканальные (с большим числом обслуживающих устройств). Многоканальные системы могут состоять из обслуживающих устройств как одинаковой, так и разной производительности.

По времени пребывания требований в очереди до начала обслуживания системы делятся на три группы:

1) с неограниченным временем ожидания (с ожиданием),

2) с отказами;

3) смешанного типа.

В СМО с неограниченным временем ожидания очередное требование, застав все устройства занятыми, становится в очередь и ожидает обслуживания до тех пор, пока одно из устройств не освободится.

В системах с отказами поступившее требование, застав все устройства занятыми, покидает систему. Классическим примером системы с отказами может служить работа автоматической телефонной станции.

В системах смешанного типа поступившее требование, застав все (устройства занятыми, становятся в очередь и ожидают обслуживания в течение ограниченного времени. Не дождавшись обслуживания в установленное время, требование покидает систему.

Кратко рассмотрим особенности функционирования некоторых из этих ситем.

1. СМО с ожиданием характеризуется тем, что в системе из n (n>=1) любая заявка, поступившая в СМО в момент, когда все каналы заняты, становится в очередь и ожидает своего обслуживания, причем любая пришедшая заявка обслужена. Такая система может находится в одном из бесконечного множества состояний: s n +к (r=1.2…) –все каналы заняты и в очереди находится r заявок.

2. СМО с ожиданием и ограничением на длину очереди отличается от вышеприведенной тем, что эта система может находиться в одном из n+m+1 состояний. В состояниях s 0 ,s 1 ,…, s n очереди не существует, так как заявок в системе или нет или нет вообще и каналы свободны (s 0), или в системе есть несколько I (I=1,n) заявок, которого обслуживает соответствующее (n+1, n+2,…n+r,…,n+m) число заявок и (1,2,…r,…,m) заявок, стоящих в очереди. Заявка, пришедшая на вход СМО в момент времени, когда в очереди стоят уже m заявок, получает отказ и покидает систему необслуженной.

Т.о, многоканальная СМО работает по сути как одноканальная, когда все n каналов работают как один с дисциплиной взаимопомощи, называемой все как один, но с более высокой интенсивностью обслуживания. Граф состояний подобной подобной системы содержит всего два состояния: s 0 (s 1)- все n каналов свободны (заняты).

Анализ различных видов СМО с взаимопомощью типа все как один показывает, что такая взаимопомощь сокращает среднее время пребывания заявки в системе, но ухудшает ряд других таких характеристик, как вероятность отказа, пропускная способность, средние число заявок в очереди и время ожидания их выполнения. Поэтому для улучшения этих показателей используется изменение дисциплины обслуживания заявок с равномерной взаимопомощью между каналами следующим образом:

· Если заявка поступает в СМО в момент времени, когда все каналы свободны, то все n каналов приступает к ее обслуживанию;

· Если в это время приходит следующая заявка, то часть каналов переключается на ее обслуживание

· Если во время обслуживания этих двух заявок поступает третья заявка, то часть каналов переключается на обслуживание этой третьей заявки, до тех пор, пока каждая заявка, находящаяся в СМО, не окажется под обслуживанием только одного канала. При этом заявка, поступившая в момент занятости всех каналов, в СМО с отказами и равномерной взаимопомощью между каналами, может получить отказ и вынуждена будет покинуть систему необслуженной.

Методы и модели, применяющиеся в теории массового обслуживания, можно условно разделить на аналитические и имитационные.

Аналитические методы теории массового обслуживания позволяют получить характеристики системы как некоторые функции параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффективность работы СМО. Имитационные методы основаны на моделировании процессов массового обслуживания на ЭВМ и применяются, если невозможно применение аналитических моделей.

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения таких задач массового обслуживания, в которых входящий поток требований является простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, т.е. вероятность поступления за время t ровно k требований задается формулой:

Важная характеристика СМО - время обслуживания требований в системе. Время обслуживания одного требования является, как правило, случайной величиной и, следовательно, может быть описано законом распределения. Наибольшее распространение в теории и особенно в практических приложениях получил экспоненциальный закон распределения времени обслуживания. Функция распределения для этого закона имеет вид:

Т.е. вероятность того, что время обслуживания не превосходит некоторой величины t, определяется этой формулой, где µ- параметр экспоненциального обслуживания требований в системе, т.е. величина, обратная времени обслуживания t об:

Рассмотрим аналитические модели наиболее распространенных СМО с ожиданием, т.е. таких СМО, в которых требования, поступившие в момент, когда все обслуживающие каналы заняты, ставятся в очередь и обслуживаются по мере освобождения каналов.

Общая постановка задачи состоит в следующем. Система имеет n обслуживающих каналов, каждый из которых может одновременно обслуживать только одно требование.

В систему поступает простейший (пауссоновский) поток требований c параметром . Если в момент поступления очередного требования в системе на обслуживании уже находится не меньше n требований (т.е. все каналы заняты), то это требование становится в очередь и ждет начала обслуживания.

В системах с определенной дисциплиной обслуживания поступившее требование, застав все устройства занятыми, в зависимости от своего приоритета, либо обслуживается вне очереди, либо становится в очередь.

Основными элементами СМО являются: входящий поток требований, очередь требований, обслуживающие устройства, (каналы) и выходящий поток требований.

Изучение СМО начинается с анализа входящего потока требований. Входящий поток требований представляет собой совокупность требований, которые поступают в систему и нуждаются в обслуживании. Входящий поток требований изучается с целью установления закономерностей этого потока и дальнейшего улучшения качества обслуживания.

В большинстве случаев входящий поток неуправляем и зависит от ряда случайных факторов. Число требований, поступающих в единицу времени, случайная величина. Случайной величиной является также интервал времени между соседними поступающими требованиями. Однако среднее количество требований, поступивших в единицу времени, и средний интервал времени между соседними поступающими требованиями предполагаются заданными.

Среднее число требований, поступающих в систему обслуживания за единицу времени, называется интенсивностью поступления требований и определяется следующим соотношением:

где Т - среднее значение интервала между поступлением очередных требований.

Для многих реальных процессов поток требований достаточно хорошо описывается законом распределения Пуассона. Такой поток называется простейшим.

Простейший поток обладает такими важными свойствами:

1) Свойством стационарности, которое выражает неизменность вероятностного режима потока по времени. Это значит, что число требований, поступающих в систему в равные промежутки времени, в среднем должно быть постоянным. Например, число вагонов, поступающих под погрузку в среднем в сутки должно быть одинаковым для различных периодов времени, к примеру, в начале и в конце декады.

2) Отсутствия последействия, которое обуславливает взаимную независимость поступления того или иного числа требований на обслуживание в непересекающиеся промежутки времени. Это значит, что число требований, поступающих в данный отрезок времени, не зависит от числа требований, обслуженных в предыдущем промежутке времени. Например, число автомобилей, прибывших за материалами в десятый день месяца, не зависит от числа автомобилей, обслуженных в четвертый или любой другой предыдущий день данного месяца.

3) Свойством ординарности, которое выражает практическую невозможность одновременного поступления двух или более требований (вероятность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени, когда последний устремляют к нулю).

При простейшем потоке требований распределение требований, поступающих в систему подчиняются закону распределения Пуассона:

вероятность того, что в обслуживающую систему за время t поступит именно k требований:

где. - среднее число требований, поступивших на обслуживание в единицу времени.

На практике условия простейшего потока не всегда строго выполняются. Часто имеет место нестационарность процесса (в различные часы дня и различные дни месяца поток требований может меняться, он может быть интенсивнее утром или в последние дни месяца). Существует также наличие последействия, когда количество требований на отпуск товаров в конце месяца зависит от их удовлетворения в начале месяца. Наблюдается и явление неоднородности, когда несколько клиентов одновременно пребывают на склад за материалами. Однако в целом пуассоновский закон распределения с достаточно высоким приближением отражает многие процессы массового обслуживания.

Кроме того, наличие пуассоновского потока требований можно определить статистической обработкой данных о поступлении требований на обслуживание. Одним из признаков закона распределения Пуассона является равенство математического ожидания случайной величины и дисперсии этой же величины, т.е.

Одной из важнейших характеристик обслуживающих устройств, которая определяет пропускную способность всей системы, является время обслуживания.

Время обслуживания одного требования ()- случайная величина, которая может изменятся в большом диапазоне. Она зависит от стабильности работы самих обслуживающих устройств, так и от различных параметров, поступающих в систему, требований (к примеру, различной грузоподъемности транспортных средств, поступающих под погрузку или выгрузку.

Случайная величина полностью характеризуется законом распределения, который определяется на основе статистических испытаний.

На практике чаще всего принимают гипотезу о показательном законе распределения времени обслуживания.

Показательный закон распределения времени обслуживания имеет место тогда, когда плотность распределения резко убывает с возрастанием времени t. Например, когда основная масса требований обслуживается быстро, а продолжительное обслуживание встречается редко. Наличие показательного закона распределения времени обслуживания устанавливается на основе статистических наблюдений.

При показательном законе распределения времени обслуживания вероятность события, что время обслуживания продлиться не более чем t, равна:

где v - интенсивность обслуживания одного требования одним обслуживающим устройством, которая определяется из соотношения:

где - среднее время обслуживания одного требования одним обслуживающим устройством.

Следует заметить, что если закон распределения времени обслуживания показательный, то при наличии нескольких обслуживающих устройств одинаковой мощности закон распределения времени обслуживания несколькими устройствами будет также показательным:

где n - количество обслуживающих устройств.

Важным параметром СМО является коэффициент загрузки , который определяется как отношение интенсивности поступления требований к интенсивности обслуживания v.

где a - коэффициент загрузки; - интенсивность поступления требований в систему; v - интенсивность обслуживания одного требования одним обслуживающим устройством.

Из (1) и (2) получаем, что

Учитывая, что - интенсивность поступления требований в систему в единицу времени, произведение показывает количество требований, поступающих в систему обслуживания за среднее время обслуживания одного требования одним устройством.

Для СМО с ожиданием количество обслуживаемых устройств п должно быть строго больше коэффициента загрузки (требование установившегося или стационарного режима работы СМО) :

В противном случае число поступающих требований будет больше суммарной производительности всех обслуживающих устройств, и очередь будет неограниченно расти.

Для СМО с отказами и смешанного типа это условие может быть ослаблено, для эффективной работы этих типов СМО достаточно потребовать, чтобы минимальное количество обслуживаемых устройств n было не меньше коэффициента загрузки :


1.3 Процесс имитационного моделирования

Как уже было отмечено ранее, процесс последовательной разработки имитационной модели начинается с создания простой модели, которая затем постепенно усложняется в соответствии с требованиями, предъявляемыми решаемой проблемой. В процессе имитационного моделирования можно выделить следующие основные этапы:

1. Формирование проблемы: описание исследуемой проблемы и определение целей исследования.

2. Разработка модели: логико-математическое описание моделируемой системы в соответствии с формулировкой проблемы.

3. Подготовка данных: идентификация, спецификация и сбор данных.

4. Трансляция модели: перевод модели на язык, приемлемый для используемой ЭВМ.

5. Верификация: установление правильности машинных программ.

6. Валидация: оценка требуемой точности и соответствие имитационной модели реальной системе.

7. Стратегическое и тактическое планирование: определение условий проведения машинного эксперимента с имитационной моделью.

8. Экспериментирование: прогон имитационной модели на ЭВМ для получения требуемой информации.

9. Анализ результатов: изучение результатов имитационного эксперимента для подготовки выводов и рекомендаций по решению проблемы.

10. Реализация и документирование: реализация рекомендаций, полученных на основе имитации, составление документации по модели и ее использованию.

Рассмотрим основные этапы имитационного моделирования. Первой задачей имитационного исследования является точное определение проблемы и детальная формулировка целей исследования. Как правило, определение проблемы является непрерывным процессом, который обычно осуществляется в течении всего исследования. Оно пересматривается по мере более глубокого понимания исследуемой проблемы и возникновения новых ее аспектов.

Как только сформулировано начальное определение проблемы, начинается этап построения модели исследуемой системы. Модель включает статистическое и динамическое описание системы. В статистическом описании определяются элементы системы и их характеристики, а в динамическом- взаимодействие элементов системы, в результате которых происходит изменение ее состояния во времени.

Процесс формирования модели во многом является искусством. Разработчик модели должен понять структуру системы, выявить правила ее функционирования и суметь выделить в них самое существенное, исключив ненужные детали. Модель должна быть простой для понимания и в то же время достаточно сложной, чтобы реалистично отображать характерные черты реальной системы. Наиболее важными являются принимаемые разработчиком решения относительно того, верны ли принятые упрощения и допущения, какие элементы и взаимодействия между ними должны быть включены в модель. Уровень детализации модели зависит от целей ее создания. Необходимо рассматривать только те элементы, которые имеют существенное значение для решения исследуемой проблемы. Как на этапе формирования проблемы, так и на этапе моделирования необходимо тесное взаимодействие между разработчиком модели и ее пользователями. Кроме того, тесное взаимодействие на этапах формулирования проблемы и разработки модели создает у пользователя уверенность в правильности модели, поэтому помогает обеспечить успешную реализацию результатов имитационного исследования.

На этапе разработки модели определяются требования к входным данным. Некоторые из этих данных могут уже быть в распоряжении разработчика модели, в то время как для сбора других потребуется время и усилия. Обычно значение таких входных данных задаются на основе некоторых гипотез или предварительного анализа. В некоторых случаях точные значения одного (и более) входных параметров оказывают небольшое влияние на результаты прогонов модели. Чувствительность получаемых результатов к изменению входных данных может быть оценена путем проведения серии имитационных прогонов для различных значений входных параметров. Имитационная модель, следовательно, может использоваться для уменьшения затрат времени и средств на уточнение входных данных. После того как разработана модель и собраны начальные входные данные, следующей задачей является перевод модели в форму, доступную для компьютера.

На этапах верификации и валидации осуществляется оценка функционирования имитационной модели. На этапе верификации определяется, соответствует ли запрограммированная для ЭВМ модель замыслу разработчика. Это обычно осуществляется путем ручной проверки вычисления, а также может быть использован и ряд статистических методов.

Установление адекватности имитационной модели исследуемой системы осуществляется на этапе валидации. Валидация модели обычно выполняется на различных уровнях. Специальные методы валидации включают установление адекватности путем использования постоянных значений всех параметров имитационной модели или путем оценивания чувствительности выходов к изменению значений входных данных. В процессе валидации сравнение должно осуществляться на основе анализа как реальных, так и экспериментальных данных о функционировании системы.

Условия проведения машинных прогонов модели определяется на этапах стратегического и тактического планирования. Задача стратегического планирования заключается в разработке эффективного плана эксперимента, в результате которого выясняется взаимосвязь между управляемыми переменными, либо находится комбинация значений управляемых переменных, минимизация или максимизация имитационной модели. В тактическом планировании в отличии от стратегического решается вопрос о том, как в рамках плана эксперимента провести каждый имитационный прогон, чтобы получить наибольшее количество информации из выходных данных. Важное место в тактическом планировании занимают определение условий имитационных прогонов и методы снижения дисперсии среднего значения отклика модели.

Следующие этапы в процессе имитационного исследования- проведение машинного эксперимента и анализ результатов- включают прогон имитационной модели на ЭВМ и интерпретацию полученных выходных данных. Последним этапом имитационного исследования является реализация полученных решений и документирование имитационной модели и ее использование. Ни одни из имитационных проектов не должен считаться законченным до тех пор, пока их результаты не были использованы в процессе принятия решений. Успех реализации во многом зависит от того, насколько правильно разработчик модели выполнил все предыдущие этапы процессов имитационного исследования. Если разработчик и пользователь работали в тесном контакте и достигли взаимопонимания при разработке модели и ее исследовании, то результат проекта скорее всего будет успешно внедряться. Если же между ними не было тесной взаимосвязи, то, несмотря на элегантность и адекватность имитационного моделирования, сложно будет разработать эффективные рекомендации.

Вышеперечисленные этапы редко выполняются в строго заданной последовательности, начиная с определения проблемы и кончая документированием. В ходе имитационного моделирования могут быть сбои в прогонах модели, ошибочные допущения, от которых в дальнейшем приходится отказываться, переориентировки целей исследования, повторные оценки и перестройки модели. Такой процесс позволяет разработать имитационную модель, которая дает верную оценку альтернатив и облегчает процесс принятия решений.


Глава 2. Распределения и генераторы псевдослучайных чисел

Ниже будут использованы следующие обозначения:

X - случайная величина; f(х) - функция плотности вероятности X; F(х) - функция вероятности X;

а - минимальное значение;

b - максимальное значение;

μ -математическое ожидание М[Х]; σ2 -дисперсия М[(Х-μ)2];

σ -среднеквадратичное отклонение; α-параметр функции плотности вероятности;

Очередь длины k, остается в ней с вероятностью Pk и не присоединяется к очереди с вероятностью gk=1 - Pk,". именно так обычно ведут себя люди в очередях. В системах массового обслуживания, являющихся математическими моделями производственных процессов, возможная длина очереди ограничена постоянной величиной (емкость бункера, например). Очевидно, это частный случай общей постановки. Некоторые...